3.11.67 \(\int \frac {1}{\sqrt {x} (a+b x^2+c x^4)} \, dx\) [1067]

3.11.67.1 Optimal result
3.11.67.2 Mathematica [C] (verified)
3.11.67.3 Rubi [A] (verified)
3.11.67.4 Maple [C] (verified)
3.11.67.5 Fricas [B] (verification not implemented)
3.11.67.6 Sympy [F(-1)]
3.11.67.7 Maxima [F]
3.11.67.8 Giac [F]
3.11.67.9 Mupad [B] (verification not implemented)

3.11.67.1 Optimal result

Integrand size = 20, antiderivative size = 331 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\frac {2^{3/4} c^{3/4} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {2^{3/4} c^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {2^{3/4} c^{3/4} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

output
2^(3/4)*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/ 
4))/(-b-(-4*a*c+b^2)^(1/2))^(3/4)/(-4*a*c+b^2)^(1/2)+2^(3/4)*c^(3/4)*arcta 
nh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))/(-b-(-4*a*c+b^2) 
^(1/2))^(3/4)/(-4*a*c+b^2)^(1/2)-2^(3/4)*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^ 
(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))/(-4*a*c+b^2)^(1/2)/(-b+(-4*a*c+b^2)^( 
1/2))^(3/4)-2^(3/4)*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^ 
2)^(1/2))^(1/4))/(-4*a*c+b^2)^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)
 
3.11.67.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.04 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.15 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\frac {1}{2} \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log \left (\sqrt {x}-\text {$\#$1}\right )}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ] \]

input
Integrate[1/(Sqrt[x]*(a + b*x^2 + c*x^4)),x]
 
output
RootSum[a + b*#1^4 + c*#1^8 & , Log[Sqrt[x] - #1]/(b*#1^3 + 2*c*#1^7) & ]/ 
2
 
3.11.67.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 318, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1435, 1685, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {1}{c x^4+b x^2+a}d\sqrt {x}\)

\(\Big \downarrow \) 1685

\(\displaystyle 2 \left (\frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{\sqrt {b^2-4 a c}}-\frac {c \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{\sqrt {b^2-4 a c}}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {c \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c}}-\frac {c \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt {b^2-4 a c}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {c \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{\sqrt {b^2-4 a c}}-\frac {c \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{\sqrt {b^2-4 a c}}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {c \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{\sqrt {b^2-4 a c}}-\frac {c \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{\sqrt {b^2-4 a c}}\right )\)

input
Int[1/(Sqrt[x]*(a + b*x^2 + c*x^4)),x]
 
output
2*(-((c*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4) 
]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^( 
1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[ 
b^2 - 4*a*c])^(3/4))))/Sqrt[b^2 - 4*a*c]) + (c*(-(ArcTan[(2^(1/4)*c^(1/4)* 
Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 
 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a* 
c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))))/Sqrt[b^2 - 4 
*a*c])
 

3.11.67.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1685
Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q 
= Rt[b^2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^n), x], x] - Simp[ 
c/q   Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 
2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.11.67.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.13

method result size
derivativedivides \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(42\)
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(42\)

input
int(1/x^(1/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/2*sum(1/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.67.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3137 vs. \(2 (251) = 502\).

Time = 0.36 (sec) , antiderivative size = 3137, normalized size of antiderivative = 9.48 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5* 
c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2 
*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)))*log(-2*(b^2*c 
- a*c^2)*sqrt(x) + (b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b^5 - 8*a^4*b^3*c + 
 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 
48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3* 
b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 
- 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 1 
6*a^5*c^2)))) - 1/2*sqrt(sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + (a^3*b^4 - 8*a^4 
*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 12*a^7*b^ 
4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)) 
)*log(-2*(b^2*c - a*c^2)*sqrt(x) - (b^4 - 5*a*b^2*c + 4*a^2*c^2 - (a^3*b^5 
 - 8*a^4*b^3*c + 16*a^5*b*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^6 - 
 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^3 - 
 3*a*b*c + (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^ 
2*c^2)/(a^6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 
 8*a^4*b^2*c + 16*a^5*c^2)))) + 1/2*sqrt(-sqrt(1/2)*sqrt(-(b^3 - 3*a*b*c + 
 (a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^ 
6*b^6 - 12*a^7*b^4*c + 48*a^8*b^2*c^2 - 64*a^9*c^3)))/(a^3*b^4 - 8*a^4*b^2 
*c + 16*a^5*c^2)))*log(-2*(b^2*c - a*c^2)*sqrt(x) + (b^4 - 5*a*b^2*c + ...
 
3.11.67.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate(1/x**(1/2)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.11.67.7 Maxima [F]

\[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )} \sqrt {x}} \,d x } \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
2*sqrt(x)/a - integrate((c*x^(7/2) + b*x^(3/2))/(a*c*x^4 + a*b*x^2 + a^2), 
 x)
 
3.11.67.8 Giac [F]

\[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2} + a\right )} \sqrt {x}} \,d x } \]

input
integrate(1/x^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
integrate(1/((c*x^4 + b*x^2 + a)*sqrt(x)), x)
 
3.11.67.9 Mupad [B] (verification not implemented)

Time = 14.98 (sec) , antiderivative size = 10401, normalized size of antiderivative = 31.42 \[ \int \frac {1}{\sqrt {x} \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
int(1/(x^(1/2)*(a + b*x^2 + c*x^4)),x)
 
output
- atan((((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3 
*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c 
^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^7 
- 512*b^2*c^6 + ((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40 
*a^2*b^3*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 2 
56*a^7*c^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(819 
2*a*b^7*c^4 - 524288*a^4*b*c^7 - 98304*a^2*b^5*c^5 + 393216*a^3*b^3*c^6) + 
 x^(1/2)*(4096*b^7*c^4 - 45056*a*b^5*c^5 - 196608*a^3*b*c^7 + 163840*a^2*b 
^3*c^6))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3 
*c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c 
^4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(3/4)) + 512*c^7*x 
^(1/2))*(-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3* 
c^2 - 11*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^ 
4 - 16*a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*1i - ((-(b^7 
+ b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 11*a*b^5* 
c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16*a^4*b^6* 
c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(2048*a*c^7 - 512*b^2*c^6 + 
((-(b^7 + b^2*(-(4*a*c - b^2)^5)^(1/2) - 48*a^3*b*c^3 + 40*a^2*b^3*c^2 - 1 
1*a*b^5*c - a*c*(-(4*a*c - b^2)^5)^(1/2))/(32*(a^3*b^8 + 256*a^7*c^4 - 16* 
a^4*b^6*c + 96*a^5*b^4*c^2 - 256*a^6*b^2*c^3)))^(1/4)*(8192*a*b^7*c^4 -...